Unidirectional invisibility induced by parity-time symmetric circuit

نویسندگان

  • Bo Lv
  • Jiahui Fu
  • Bian Wu
  • Rujiang Li
  • Qingsheng Zeng
  • Xinhua Yin
  • Qun Wu
  • Lei Gao
  • Wan Chen
  • Zhefei Wang
  • Zhiming Liang
  • Ao Li
  • Ruyu Ma
چکیده

Parity-time (PT) symmetric structures present the unidirectional invisibility at the spontaneous PT-symmetry breaking point. In this paper, we propose a PT-symmetric circuit consisting of a resistor and a microwave tunnel diode (TD) which represent the attenuation and amplification, respectively. Based on the scattering matrix method, the circuit can exhibit an ideal unidirectional performance at the spontaneous PT-symmetry breaking point by tuning the transmission lines between the lumped elements. Additionally, the resistance of the reactance component can alter the bandwidth of the unidirectional invisibility flexibly. Furthermore, the electromagnetic simulation for the proposed circuit validates the unidirectional invisibility and the synchronization with the input energy well. Our work not only provides an unidirectional invisible circuit based on PT-symmetry, but also proposes a potential solution for the extremely selective filter or cloaking applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reciprocal and unidirectional scattering of parity-time symmetric structures

Parity-time (PT) symmetry is of great interest. The reciprocal and unidirectional features are intriguing besides the (PT) symmetry phase transition. Recently, the reciprocal transmission, unidirectional reflectionless and invisibility are intensively studied. Here, we show the reciprocal reflection/transmission in (PT)-symmetric system is closely related to the type of (PT) symmetry, that is, ...

متن کامل

Unidirectional invisibility induced by PT-symmetric periodic structures.

Parity-time (PT) symmetric periodic structures, near the spontaneous PT-symmetry breaking point, can act as unidirectional invisible media. In this regime, the reflection from one end is diminished while it is enhanced from the other. Furthermore, the transmission coefficient and phase are indistinguishable from those expected in the absence of a grating. The phenomenon is robust even in the pr...

متن کامل

Directionally Hiding Objects and Creating Illusions at Visible Wavelengths by Holography

Invisibility devices have attracted considerable attentions in the last decade. In addition to invisibility cloaks, unidirectional invisibility systems such as carpet-like cloaks and parity-time symmetric structures are also inspiring some specific researching interests due to their relatively simplifying design. However, unidirectional invisibility systems worked generally in just one certain ...

متن کامل

Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies.

Invisibility by metamaterials is of great interest, where optical properties are manipulated in the real permittivity-permeability plane. However, the most effective approach to achieving invisibility in various military applications is to absorb the electromagnetic waves emitted from radar to minimize the corresponding reflection and scattering, such that no signal gets bounced back. Here, we ...

متن کامل

Experimental observation of the dual behavior of PT -symmetric scattering

We investigate experimentally parity-time (PT ) symmetric scattering using LRC circuits in an inductively coupled PT -symmetric pair connected to transmission line leads. In the single-lead case, the PT -symmetric circuit acts as a simple dual device—an amplifier or an absorber depending on the orientation of the lead. When a second lead is attached, the system exhibits unidirectional transpare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017